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On Mean Approximation of Holomorphic Functions
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This paper is concerned with extensions of results found in [3]. We shall
consider the problem ofapproximating by certain rational functions, elements
ofthe Banach space Ar,p(V) with norm IllIv.r.p corresponding to a bounded open
subset Vofthe complex plane C and a pair ofreal numbers r <: Oand 1 ,;;;; p,;;;; IX).

Ar.iV) = {f: f: V -7 Cis holomorphic and IIfllv,r.p < IX)},

IIfllv.r.p = [Jy Kyr<" ')Ifml
p
dm] lip

Ilfllv.r.oo = sup{Kyr(t ')lfWI: , E V}.

Here Ky(z, ,) denotes the Bergman kernel function of V, and dm denotes
integration in , in planar measure.

DEFINITION. Let X and Ybe components of C - clos V where clos S means the
closure of the set Sin C. We use the notation X,;;;; Yto mean that there exists a
sequence WI = X, W2, ••• , Wn = Y of (not necessarily distinct) components of
C - clos V with the following property: For each j = 2,3, ... , n there exists a
simple closed curve a j: [0, tj] -7 clos Wj ; such that

a. aj is twice continuously differentiable as a function of arc length t.

b. The bounded component ofC - {ait): 0,;;;; t,;;;; tj } is contained in Wj'

c. J~ I10gBj 0 aiOI dt = IX), where Biz) = inf{jz - wi: WE' Wj-I}'

The relation <: will then be symmetric and transitive.

THEOREM. Let V be a bounded open subset ofC such that

i. clos(C - clos V) = C - V, and

ii. there exist constants CI > 0 and C2 < IX) such that c\ ,;;;; Ky(z,z)Sv2(z),;;;; C2

for all Z E V, where Sv(z) = inf{lz - wi: w E C - V}. (The latter condition will
automatically hold if each component of V is simply connected.) !f2r is not an
integer, assume that each component of V is simply connected.

Let M be a linear subspace ofAr.iV) such that

iii. given a component Y ofC - clos V, either Wo = (the unbounded compon
ent of C - clos V) ,;;;; Y, or there exists a component X of C - clos V such that
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HOLOMORPHIC FUNCTIONS 413

x <; Y and M contains every rational function all ofwhose poles are simple and
lie in ax(the boundary ofX). (IfaX is afinite collection ofdisjoint Jordan curves,
we need only assume that M contains all rational functions all ofwhose poles are
simple and lie in some fixed subarc of()X.)

Ifr <; 0 andp = 1, or ifr.:;; -1 and 1 < p < 2, then M is dense in Ar,P{V).

Remarks. (i) Without knowing anything about the relationship between the
various components of C - clos V, one sees that letting M consist of all
rational functions all of whose poles are simple and lie in (C - clos Wo) () av,
one can always assert the above density properties ofM.

(ii) In the event that Wo <; W for every component W of C - clos V, one can
take M to be the set C[z] of all polynomials in z.

PROPOSITION 1. Let V be a bounded open subset of C such that C - V has
only finitely many components, and each has interior points. Then for r.:;; 0,
Ar,t(V) c Ar-t,,,,(V) and the inclusion map is continuous.

COROLLARY 1. If M, V, rand p satisfy the hypotheses i, ii, and iii of the
Theorem, and the hypotheses ofProposition 1, then every Lp (1 .:;;p.:;; ct)) analytic
function on V is the limit under the norm II Ilv,-t,,,, of a suitable sequence of
elements ofM.

We next see that hypothesis iii of the Theorem is in certain circumstances a
condition which is necessary for M to be dense in Ar,p(V).

PROPOSITION 2. Let 0(, fI and y be three simple closed curves such that y lies
inside fI, and fI lies inside 0(. We allow the possibility that 0( and fI, or f3 and y have
points in common. Assume that f3: [O,L] -+- C is twice continuously differentiable
as a function ofarc length. Let D be the open set consisting ofall points strictly
inside 0( and strictly outside y. Suppose that f~ 10goD 0 fI(t)dt > -ct). Then for
any constant c > 0 and any r.:;; 0, the polynomials belonging to {f: 11/IID,r,t .:;; c}
form a normalfamily on the set ofpoints inside 0(.

COROLLARY 2. Let V be an open subset of C, M some collection of rational
functions all of whose poles are simple and lie in C - V. Let 0(, f3, and y be as in
Proposition 2, and assume that the set D described in Proposition 2 is contained in
V. If there exists a limit point ofC - V inside f3, and ifthe set ofallpoints z lying
inside 0( such that at least one element of M has a pole at z, is finite, then for
r.:;; 0 and 1 <;p < 2, M is not dense in Ar,P{V).
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Example. Consider the situation depicted in Figure 1. Assume that a and f3
are simple closed Jordan curves, tangent to the real axis at each intersection
point,

J
I / 2

log ov(t) dt > -w,
-1}2

and J~ log OC-WD 0 aCt) dt = -w,

where a: [O,L] --+ C is parametrized by arc length and is twice continuously
differentiable, and Wo= {z: Izi > 1}. Then the set of all rational functions all
of whose poles are simple and lie inside (or on) f3 is dense in Ar,p(V) ifr ~°and
p = 0, or if r ~ -1 and 1 < p < 2. Conversely, if r ~°and 1 ~ p ~ w, if M is
some collection of rational functions all of whose poles are simple and lie in
C - V, and if M is dense in Ar,P{V), then there exist infinitely many points z
inside or on f3 for which one can find an element of M having a pole at z.

v

FIG. 1.

The existence ofconstantSCI > 0, C2 < w such thatci ~ Kv(', Oov2(O ~ c2for
all' E V: To see that this condition holds only for special V, note that Kv = Kv'
whenever V'is obtained from Vbyremovingfinitelymanypoints, On the other
hand, we have: Suppose V satisfies the hypotheses ofProposition 1. Let So, ..., S"
be the components of C - V, where So is unbounded, and assume that there
exists an interior pointpj ofSj,for eachj = 1,2, ..., n. Then there exist constants
CI > °and C2 < w (perhaps depending on V) such that CJ < Kv(', ')ovZ(O ~ Cz
for all' E V.

Proof (i) Choose CI > °and C2 < w such that CI ,,;;; Kn(z,z)on2(z),,;;; Cz for
every simply-connected domain Din C, and every z in D. Givenzo E aso n av,
one can find a neighborhood W ofZo such that every component ofE = W n V
is simply connected. On the other hand, vc F= V U SJ U ... U Sm where
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each component of F is simply-connected. Choose a neighborhood H of Zo

such that for z E H n V, OE(Z) = Oy(z) = op(z). Then for Z E H n V,

CJ < Kp(z, z) Op2(Z) < Kv(z, z) ov2(z) < KE(z, z) oi(z) < C2'

SO CJ < Kv(z,z)ov2(z) < C2 holds for Z E V n W, for some neighborhood W
(generally, one different from the above) of aso n avo

(ii) Next, consider Zo E Si n av, 1<j< n, and let 0 < € < 1. Define
T(z) = 1/(z - Pi) for Z E C - {Pi}' Then the bounded open set T(V) satisfies the
hypotheses of Proposition 1, and T(zo) is in the unbounded component of
C - T(V), so by (i), one can choose a neighborhood W of Zo such that if
z E W n V, then

Furthermore, by choosing W sufficiently fine, one can also easily show that for
ZEWn V,

IT'(z) 1(1 - €) < oT(V)(T(z»/8v(z) < IT'(z)l(l + E).

It then follows from the transformation formula for the Bergman kernel
function, that for Z E W n V,

(1 + €)-2 CJ ~ Kv(z, z) Oy2(Z) ~ (1 - €t2C2.

BythecompactnessofoV, thisalsoholdsforz E W n V, where Wis some open
set containing avo

Hence, if V satisfies the hypotheses of Proposition 1, then there exist
constants CI > 0 and C2 < 00 (which may depend on V), such that
CJ ~ Kv(z,z)8l(z) ~ C2 for allz E V.

Proof of Proposition 1. Let Zo E av, where V satisfies the hypotheses of
Proposition 1. Choose a neighborhood N of zo, such that every component of
N n V is simply connected. As shown in [4], page 199, one can find a constant c
such that for any bounded simply connected domain D, any r ~ 0, and any
fE Ar.t(D), IlfIlD,r-t.oo ~ cllfIID.r.t. So

1I/IIv,r,1 ;;3 II/IIN nY.r,1 ;;3 clll liN nv .r-I ,00 ;;3 c'l O~-nt(z)/(z)1

for zEN n V. Then for some constant c" and a sufficiently fine neighborhood
H ofZo, 1I/IIv.r.t ;;3 c" Ky-1(z, z)1 I(z)! for Z E H n V. It is also easy to show that
similar estimates hold on compact subsets of V, concluding the proof of
Proposition 1.

ProofofCorollary 1. For 1~P ~ 00, we have the continuous inclusions

Ao.p(V) c AO,l(V) c A_1.oo(V).
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ProofofProposition 2. There exists a constant c, such that for any f E Ar,I(V)
and Z E V, I/(z)! < coV'-2(z)ll/llr,1 ,v. The result then follows from the results
in (6] on the differentiability ofa conformal mapping Tofthe unit disk onto the
set ofpoints inside {3, and the application of the Poisson-Jensen formula to the
functions loT. (Iff has a zero of order n > 0 at T(O), we, instead, consider
10 T(z)(zn, whose modulus is greater than or equal to that of/o Tfor Izi < 1,
with equality for Izi = 1.)

Proofofthe Theorem. Let 1 <p < 2, and let I: Ar ,p( V) --+ C be a continuous
linear functional, such that I(M) = {OJ. It will be shown that I(Ar,iV» = {OJ.
Obtain a function" E LiC) (where IIp + llq = 1), such that .:\(z) = 0 for
Z E C - V, and

for eachf E Ar,iV). We shall construct a function h: C --+ C, such that

1. h has generalized partial derivatives which satisfy ojozh(z) = 0 if
z E C - V, and o(ozh(z) = Kvr(z, z) "(z) almost everywhere on V.

2. h is continuous on C, and h(z) = 0 ifz E C - V.

3. Ifp=l,thenforallzEV,

\h(z) \ <; C3 Kvr(z, z) Oyez) [1 + log+(ljoy(z»)]

for some constant C3 which does not depend on z. Here log+(t) means
max {O,logt}.

4. If 1 < p < 2, then for Z E V,

jh(z)! < Cp Kyr(z, z) O~-2/q(Z),

where cp is a constant which does not depend on z.
We then construct the function

Wn(Z) = j((1og 10g(pjov(z)]ln),

wherej: R --+ R is continuously differentiable (R = the real numbers),j(t) = 1
for t < 0, jet) = 0 for t> 1, and 0 <jet) < 1 for 0 < t < 1, and p = 1 + the
diameter of V. By the boundedness ofj'(t) and the fact that Ov is Lipschitzian,
we can find a constant C4 such that for all z E V,

5. lojozwn(z)! < c4/[noy(z)log(pIOy(z»].
Here C4 does not depend on n. Here, too, differentiation is in the generalized
sense.

One next shows that, for f E Ar,iV),

6. fv wnm/mKyr(~, ~)Amdm = - fv (o!o~wnC~»/mh(lJdm.

We first prove 6. Let n be fixed; then choose a compact set L in V, and a
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sequence gk of functions on C into C, with continuous first partial derivatives
with respect to x and to y on C, such that L contains the support of W n and of

each gk' and

lim Ilwn - gkllv ,O,p = 0 = lim Ilojozwn- ojozgkllv,o,p.
k~oo k~ro

Furthermore, for each k,

fv gk(~)fWKvr(t~) A(~)d(~) = -fv (oja~gk(mhWd(O,

by 1. Hence 6 follows by taking the limit as k approaches CIJ.

IfP = I, using 3, 5, and 6, one sees that

1/(/)1

,;;;; ~~~ fv \fW1c3 Kvr(" ')OYW[1 + 10g+(ljovW)] c4/[novW 10g(ployW]d(~)

,;;;;lim(ljn)c3c4(1 + Ijlogp]llfllv,r,1 =0,

proving the theorem for p = 1.
If I < P < 2, using hypothesis ii and 4, 5, and 6, one sees that

IfA wn(OfWKvra, ~)AWdm\

,;;;; (lin) fA IfWICpKrIPa, ,) c'i°-IIP) av'm c4 jlog(plovm)dm,

where s = -2(r - rjp) - 2jq = -2(r + I )jq. Then /(/) = 0 if r <;-1.

Proofofl-4. For z E C let

h(z) = (-1/71") fv Am Kvr(" ml(~ - z)]dm·

By [1], page 7, and [2], page 386, we see that h is continuous on C, holomorphic
on the interior of C - V, satisfies I, and for all z and win C,

Ih(z) - h(w) I ,;;;; cslz - wi'

for some positive constants Cs and € which are independent ofz and w. We shall
first prove that h(z) = 0 for Z E C - V. Let WI be a component of C - clos V.
If WI is unbounded, using the fact that M contains all polynomials in z and
Mergelyan's Theorem, one sees that h(z) = 0 for Z E WI' If WI is bounded and
if M contains all rational functions whose poles are simple and lie in OWl> then
h(z) = 0 for z E OWl' so h(z) = 0 for Z E WI> by the maximum principle.

Now let WI and W2 be two components of C - clos V, such that h(z) = 0
for z E WI> and such that there exists a simple closed curve OC2: (0, t21-i>- C
which is twice continuously differentiable as a function of arc length t, and for
which the bounded component W2' of C - {OC2(t): 0,;;;; t <; t2} is contained
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in W2, and WIlog32 0 a2(t)1 dt = CD, where oz(z) = inf{lz -- \1'1: WE WI}'
Clearly, Ih(z)j <; csoz€(z) for all z E C. To see that h(z) = 0 for z E Wz, pick a
continuously differentiable homeomorphism T of cIosLlo onto Wz' U {az(t):
0<; t <; tz)}, where Ll o = {z: Izi < I}, which is holomorphic on Ll o. (This is
possible, by [6).) Then

CD = f:2110g(oz 0 ait»1 dt = f:" jlog(oz 0 T)(eio)djdBT(eio)j dO

<; sup{ldjdOT(eio)!: 0 <; 0 <; 27T} J:" jlOg02 0 T(eio)IdB,

implying j5"lh 0 T(e'o)IdB = CI), so h(z) = 0 for z E W2, by [5], page 73. Using
this technique, we can prove inductively, that if X and Yare components of
C - clos V, X < Y, and h(z) = 0 for z E X, then h(z) = 0 for z E Y. Then, by
hypothesis, h(z) = 0 for z E clos(C - clos V) = C - V.

By [1], page 7, and hypothesis ii, we see that 3 holds for r = 0, so the theorem
is true for r = 0 and p = 1.

We shall now show that h satisfies 3 for all r < O. Choose an integer m ;;;. 0,
and a number a, 0 <; a < I, such that -2r = m + a. Let p E aV, letf(z) be some
holomorphic branch of(z - p)a defined on V, and let WE C - V. Define

H(w,z) = (-I(7T) Jy ,\mKyra, W[a - z)(~ - w)mfm]d(~).

To see that H(w,z) = 0 for z E C - V, first pick m + 1 distinct points
z, WI> ••. , Wm in C - clos V, and let

Theng E Ao,'(V), so using our theorem as proven above for r = 0, there exists a
sequence R I , R 2, R 3, ••• of elements of M, such that lim IIRk - gllv .0,1 = o.
Then k~oo

Using hypothesis ii and [2], page 386, one sees that

fv,\m Kvr(~, ~)j[(~ - z)(~ - WI) '" a- wn)fW] dm
is a continuous function of anyone of z E C and WI> W2, .•. , W m E C - V,
with the remaining points fixed. So H(w,z) is continuous in z E C, and
H(w,z) = 0 if z E C - V. Now define h(w,z): h(w,z) = 0 if Z E C - V,
h(w,z) = (z - w)mf(z)H(w,z) for z E V. Clearly h(w,z) is continuous
in z E C. Consider h(w,z) - h(z). It is continuous on C, zero on C - V, and
since ajaz[h(w,z) - h(z)] = 0 almost everywhere on V, h(w,z) - h(z) is holo
morphic on V. The maximum principle then implies h(w,z) = h(z) on C.
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Then [1], page 7, and hypothesis ii imply that h satisfies 3, completing the
proof of the theorem, for p = 1.

To prove the Theorem for 1 < P < 2, we modify the above as follows: If
r = -1 and 1 <p < 2, g will be of the form 1/[(' - z)a - Wl)a - W2)], so by
considering g as a linear combination of 1/(, - z), 1/(' - WI), 1/(~ - W2) for
Z, WI> and W2 distinct, we see that H(w,z) = 0 for z E C - V. This implies that
the Theorem holds for 1 < p < 2 and r = -1. The case r < -1 is handled as
above, by approximating g by elements of M.
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