On Mean Approximation of Holomorphic Functions

DAVID BELL

Department of Mathematics, Rice University, Houston, Texas 77001

This paper is concerned with extensions of results found in [3]. We shall consider the problem of approximating by certain rational functions, elements of the Banach space $A_{r,p}(V)$ with norm $\|\|_{V,r,p}$ corresponding to a bounded open subset V of the complex plane **C** and a pair of real numbers $r \leq 0$ and $1 \leq p \leq \infty$.

$$\begin{aligned} A_{r,p}(V) &= \{f: f: V \to \mathbf{C} \text{ is holomorphic and } \|f\|_{V,r,p} < \infty \}, \\ \|f\|_{V,r,p} &= \left[\int_{V} K_{V}'(\zeta,\zeta) |f(\zeta)|^{p} d(\zeta) \right]^{1/p} \quad \text{for } 1 \leq p < \infty, \\ \|f\|_{V,r,\infty} &= \sup\{K_{V}'(\zeta,\zeta) |f(\zeta)|: \zeta \in V\}. \end{aligned}$$

Here $K_V(z,\zeta)$ denotes the Bergman kernel function of V, and $d(\zeta)$ denotes integration in ζ in planar measure.

DEFINITION. Let X and Y be components of \mathbb{C} - clos V where clos S means the closure of the set S in \mathbb{C} . We use the notation $X \leq Y$ to mean that there exists a sequence $W_1 = X, W_2, ..., W_n = Y$ of (not necessarily distinct) components of \mathbb{C} - clos V with the following property: For each j = 2, 3, ..., n there exists a simple closed curve $\alpha_j: [0, t_j] \rightarrow \operatorname{clos} W_j$; such that

- a. α_i is twice continuously differentiable as a function of arc length t.
- b. The bounded component of $\mathbf{C} \{\alpha_j(t) : 0 \le t \le t_j\}$ is contained in W_j .
- c. $\int_{0}^{t_{j}} |\log \delta_{j} \circ \alpha_{j}(t)| dt = \infty, \text{ where } \delta_{j}(z) = \inf\{|z w| : w \in W_{j-1}\}.$

The relation \leq will then be symmetric and transitive.

THEOREM. Let V be a bounded open subset of C such that

i. $clos(\mathbf{C} - clos V) = \mathbf{C} - V$, and

ii. there exist constants $c_1 > 0$ and $c_2 < \infty$ such that $c_1 \leq K_V(z,z)\delta_V^2(z) \leq c_2$ for all $z \in V$, where $\delta_V(z) = \inf\{|z - w| : w \in \mathbb{C} - V\}$. (The latter condition will automatically hold if each component of V is simply connected.) If 2r is not an integer, assume that each component of V is simply connected.

Let M be a linear subspace of $A_{r,p}(V)$ such that

iii. given a component Y of $\mathbf{C} - \operatorname{clos} V$, either $W_0 = (\text{the unbounded compon$ $ent of } \mathbf{C} - \operatorname{clos} V) \leq Y$, or there exists a component X of $\mathbf{C} - \operatorname{clos} V$ such that $X \leqslant Y$ and M contains every rational function all of whose poles are simple and lie in ∂X (the boundary of X). (If ∂X is a finite collection of disjoint Jordan curves, we need only assume that M contains all rational functions all of whose poles are simple and lie in some fixed subarc of ∂X .)

If $r \leq 0$ and p = 1, or if $r \leq -1$ and $1 , then M is dense in <math>A_{r,p}(V)$.

Remarks. (i) Without knowing anything about the relationship between the various components of $\mathbf{C} - \operatorname{clos} V$, one sees that letting M consist of all rational functions all of whose poles are simple and lie in $(\mathbf{C} - \operatorname{clos} W_0) \cap \partial V$, one can always assert the above density properties of M.

(ii) In the event that $W_0 \leq W$ for every component W of $\mathbb{C} - \operatorname{clos} V$, one can take M to be the set $\mathbb{C}[z]$ of all polynomials in z.

PROPOSITION 1. Let V be a bounded open subset of C such that C - V has only finitely many components, and each has interior points. Then for $r \leq 0$, $A_{r,1}(V) \subseteq A_{r-1,\infty}(V)$ and the inclusion map is continuous.

COROLLARY 1. If M, V, r and p satisfy the hypotheses i, ii, and iii of the Theorem, and the hypotheses of Proposition 1, then every $L_p(1 \le p \le \infty)$ analytic function on V is the limit under the norm $\|\|_{V,-1,\infty}$ of a suitable sequence of elements of M.

We next see that hypothesis iii of the Theorem is in certain circumstances a condition which is necessary for M to be dense in $A_{r,p}(V)$.

PROPOSITION 2. Let α, β and γ be three simple closed curves such that γ lies inside β , and β lies inside α . We allow the possibility that α and β , or β and γ have points in common. Assume that $\beta: [0, L] \rightarrow \mathbb{C}$ is twice continuously differentiable as a function of arc length. Let D be the open set consisting of all points strictly inside α and strictly outside γ . Suppose that $\int_0^L \log \delta_D \circ \beta(t) dt > -\infty$. Then for any constant c > 0 and any $r \leq 0$, the polynomials belonging to $\{f: ||f||_{D,r,1} \leq c\}$ form a normal family on the set of points inside α .

COROLLARY 2. Let V be an open subset of C, M some collection of rational functions all of whose poles are simple and lie in $\mathbb{C} - V$. Let α , β , and γ be as in Proposition 2, and assume that the set D described in Proposition 2 is contained in V. If there exists a limit point of $\mathbb{C} - V$ inside β , and if the set of all points z lying inside α such that at least one element of M has a pole at z, is finite, then for $r \leq 0$ and $1 \leq p < 2$, M is not dense in $A_{r,p}(V)$.

Example. Consider the situation depicted in Figure 1. Assume that α and β are simple closed Jordan curves, tangent to the real axis at each intersection point,

$$\int_{-1/2}^{1/2} \log \delta_{\mathbf{V}}(t) dt > -\infty, \quad \text{and} \quad \int_{0}^{L} \log \delta_{\mathbf{C}-\mathbf{W}_{0}} \circ \alpha(t) dt = -\infty,$$

where $\alpha: [0,L] \to \mathbb{C}$ is parametrized by arc length and is twice continuously differentiable, and $W_0 = \{z: |z| > 1\}$. Then the set of all rational functions all of whose poles are simple and lie inside (or on) β is dense in $A_{r,p}(V)$ if $r \leq 0$ and p = 0, or if $r \leq -1$ and $1 . Conversely, if <math>r \leq 0$ and $1 \leq p \leq \infty$, if M is some collection of rational functions all of whose poles are simple and lie in $A_{r,p}(V)$, then there exist infinitely many points z inside or on β for which one can find an element of M having a pole at z.

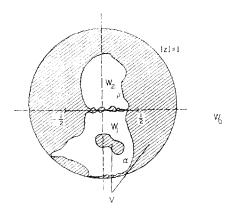


FIG. 1.

The existence of constants $c_1 > 0$, $c_2 < \infty$ such that $c_1 \leq K_V(\zeta, \zeta) \delta_V^2(\zeta) \leq c_2$ for all $\zeta \in V$: To see that this condition holds only for special V, note that $K_V = K_{V'}$ whenever V' is obtained from V by removing finitely many points. On the other hand, we have: Suppose V satisfies the hypotheses of Proposition 1. Let S_0, \ldots, S_n be the components of $\mathbb{C} - V$, where S_0 is unbounded, and assume that there exists an interior point p_i of S_i , for each $j = 1, 2, \ldots, n$. Then there exist constants $c_1 > 0$ and $c_2 < \infty$ (perhaps depending on V) such that $c_1 \leq K_V(\zeta, \zeta) \delta_V^2(\zeta) \leq c_2$ for all $\zeta \in V$.

Proof. (i) Choose $c_1 > 0$ and $c_2 < \infty$ such that $c_1 \leq K_D(z, z) \delta_D^2(z) \leq c_2$ for every simply-connected domain D in \mathbb{C} , and every z in D. Given $z_0 \in \partial S_0 \cap \partial V$, one can find a neighborhood W of z_0 such that every component of $E = W \cap V$ is simply connected. On the other hand, $V \subset F = V \cup S_1 \cup \ldots \cup S_n$, where each component of F is simply-connected. Choose a neighborhood H of z_0 such that for $z \in H \cap V$, $\delta_E(z) = \delta_V(z) = \delta_F(z)$. Then for $z \in H \cap V$,

$$c_1 \leqslant K_F(z,z)\,\delta_F^2(z) \leqslant K_V(z,z)\,\delta_V^2(z) \leqslant K_E(z,z)\,\delta_E^2(z) \leqslant c_2.$$

So $c_1 \leq K_V(z,z) \delta_V^2(z) \leq c_2$ holds for $z \in V \cap W$, for some neighborhood W (generally, one different from the above) of $\partial S_0 \cap \partial V$.

(ii) Next, consider $z_0 \in S_j \cap \partial V$, $1 \leq j \leq n$, and let $0 < \epsilon < 1$. Define $T(z) = 1/(z - p_j)$ for $z \in \mathbb{C} - \{p_j\}$. Then the bounded open set T(V) satisfies the hypotheses of Proposition 1, and $T(z_0)$ is in the unbounded component of $\mathbb{C} - T(V)$, so by (i), one can choose a neighborhood W of z_0 such that if $z \in W \cap V$, then

$$c_1 \leqslant K_{T(V)}(T(z), T(z)) \,\delta^2_{T(V)}(T(z)) \leqslant c_2.$$

Furthermore, by choosing W sufficiently fine, one can also easily show that for $z \in W \cap V$,

$$|T'(z)|(1-\epsilon) \leq \delta_{T(V)}(T(z))/\delta_V(z) \leq |T'(z)|(1+\epsilon).$$

It then follows from the transformation formula for the Bergman kernel function, that for $z \in W \cap V$,

$$(1+\epsilon)^{-2}c_1 \leqslant K_V(z,z)\,\delta_V^2(z) \leqslant (1-\epsilon)^{-2}c_2.$$

By the compactness of ∂V , this also holds for $z \in W \cap V$, where W is some open set containing ∂V .

Hence, if V satisfies the hypotheses of Proposition 1, then there exist constants $c_1 > 0$ and $c_2 < \infty$ (which may depend on V), such that $c_1 \leq K_V(z,z) \delta_V^2(z) \leq c_2$ for all $z \in V$.

Proof of Proposition 1. Let $z_0 \in \partial V$, where V satisfies the hypotheses of Proposition 1. Choose a neighborhood N of z_0 , such that every component of $N \cap V$ is simply connected. As shown in [4], page 199, one can find a constant c such that for any bounded simply connected domain D, any $r \leq 0$, and any $f \in A_{r,1}(D)$, $||f||_{D,r-1,\infty} \leq c ||f||_{D,r,1}$. So

$$||f||_{V,r,1} \ge ||f||_{N \cap V,r,1} \ge c ||f||_{N \cap V,r-1,\infty} \ge c' |\delta_{N \cap V}^{2-2r}(z)f(z)|$$

for $z \in N \cap V$. Then for some constant c'' and a sufficiently fine neighborhood H of z_0 , $||f||_{V,r,1} \ge c'' K_V^{r-1}(z,z)|f(z)|$ for $z \in H \cap V$. It is also easy to show that similar estimates hold on compact subsets of V, concluding the proof of Proposition 1.

Proof of Corollary 1. For $1 \le p \le \infty$, we have the continuous inclusions

$$A_{0,p}(V) \subseteq A_{0,1}(V) \subseteq A_{-1,\infty}(V),$$

Proof of Proposition 2. There exists a constant c, such that for any $f \in A_{r,1}(V)$ and $z \in V$, $|f(z)| \leq c \, \delta_V^{2r-2}(z) ||f||_{r,1,V}$. The result then follows from the results in [6] on the differentiability of a conformal mapping T of the unit disk onto the set of points inside β , and the application of the Poisson–Jensen formula to the functions $f \circ T$. (If f has a zero of order n > 0 at T(0), we, instead, consider $f \circ T(z)/z^n$, whose modulus is greater than or equal to that of $f \circ T$ for $|z| \leq 1$, with equality for |z| = 1.)

Proof of the Theorem. Let $1 \le p < 2$, and let $l: A_{r,p}(V) \to \mathbb{C}$ be a continuous linear functional, such that $l(M) = \{0\}$. It will be shown that $l(A_{r,p}(V)) = \{0\}$. Obtain a function $\lambda \in L_q(\mathbb{C})$ (where 1/p + 1/q = 1), such that $\lambda(z) = 0$ for $z \in \mathbb{C} - V$, and

$$l(f) = \int_{V} \lambda(\zeta) K_{V}(\zeta, \zeta) f(\zeta) d(\zeta)$$

for each $f \in A_{r,p}(V)$. We shall construct a function $h: \mathbb{C} \to \mathbb{C}$, such that

1. *h* has generalized partial derivatives which satisfy $\partial/\partial \bar{z}h(z) = 0$ if $z \in \mathbb{C} - V$, and $\partial/\partial \bar{z}h(z) = K_V r(z, z)\lambda(z)$ almost everywhere on V.

2. *h* is continuous on **C**, and h(z) = 0 if $z \in \mathbf{C} - V$.

3. If p = 1, then for all $z \in V$,

$$|h(z)| \leq c_3 K_{\nu}(z,z) \delta_{\nu}(z) \left[1 + \log^+(1/\delta_{\nu}(z))\right]$$

for some constant c_3 which does not depend on z. Here $\log^+(t)$ means $\max\{0, \log t\}$.

4. If $1 , then for <math>z \in V$,

 $|h(z)| \leq c_p K_V^r(z,z) \,\delta_V^{1-2/q}(z),$

where c_p is a constant which does not depend on z.

We then construct the function

$$\omega_n(z) = j([\log \log(\rho/\delta_V(z))]/n),$$

where $j: R \to R$ is continuously differentiable (R = the real numbers), j(t) = 1for $t \leq 0$, j(t) = 0 for $t \geq 1$, and $0 \leq j(t) \leq 1$ for 0 < t < 1, and $\rho = 1$ + the diameter of V. By the boundedness of j'(t) and the fact that δ_V is Lipschitzian, we can find a constant c_4 such that for all $z \in V$,

5. $|\partial/\partial \bar{z}\omega_n(z)| \leq c_4/[n\delta_V(z)\log(\rho/\delta_V(z))].$

Here c_4 does not depend on *n*. Here, too, differentiation is in the generalized sense.

One next shows that, for $f \in A_{r,p}(V)$,

6.
$$\int_{V} \omega_{n}(\zeta) f(\zeta) K_{V}(\zeta, \zeta) \lambda(\zeta) d(\zeta) = -\int_{V} (\partial/\partial \overline{\zeta} \omega_{n}(\zeta)) f(\zeta) h(\zeta) d(\zeta).$$

We first prove 6. Let n be fixed; then choose a compact set L in V, and a

sequence g_k of functions on **C** into **C**, with continuous first partial derivatives with respect to x and to y on **C**, such that L contains the support of ω_n and of each g_k , and

$$\lim_{k\to\infty} ||\omega_n - g_k||_{V,0,p} = 0 = \lim_{k\to\infty} ||\partial/\partial \bar{z}\omega_n - \partial/\partial \bar{z}g_k||_{V,0,p}.$$

Furthermore, for each k,

$$\int_{V} g_{k}(\zeta) f(\zeta) K_{V}^{r}(\zeta,\zeta) \lambda(\zeta) d(\zeta) = -\int_{V} (\partial/\partial \zeta g_{k}(\zeta)) h(\zeta) d(\zeta),$$

by 1. Hence 6 follows by taking the limit as k approaches ∞ .

If p = 1, using 3, 5, and 6, one sees that

$$|l(f)| \leq \lim_{n \to \infty} \int_{V} |f(\zeta)| c_3 K_V^r(\zeta, \zeta) \delta_V(\zeta) [1 + \log^+(1/\delta_V(\zeta))] c_4 / [n\delta_V(\zeta) \log(\rho/\delta_V(\zeta)] d(\zeta)$$
$$\leq \lim_{n \to \infty} (1/n) c_3 c_4 [1 + 1/\log \rho] ||f||_{V,r,1} = 0,$$

proving the theorem for p = 1.

If 1 , using hypothesis ii and 4, 5, and 6, one sees that

$$\left| \int_{\Delta} \omega_n(\zeta) f(\zeta) K_V'(\zeta, \zeta) \lambda(\zeta) d(\zeta) \right|$$

$$\leq (1/n) \int_{\Delta} |f(\zeta)| c_p K^{r/p}(\zeta, \zeta) c_1^{r(1-1/p)} \delta_V^s(\zeta) c_4 / \log(\rho/\delta_V(\zeta)) d(\zeta),$$

where s = -2(r - r/p) - 2/q = -2(r + 1)/q. Then l(f) = 0 if $r \le -1$.

Proof of 1–4. For $z \in \mathbf{C}$ let

$$h(z) = (-1/\pi) \int_{V} \lambda(\zeta) K_{V}(\zeta, \zeta) [1/(\zeta-z)] d(\zeta).$$

By [1], page 7, and [2], page 386, we see that h is continuous on C, holomorphic on the interior of C - V, satisfies 1, and for all z and w in C,

$$|h(z)-h(w)| \leq c_5|z-w|^{\epsilon}$$

for some positive constants c_5 and ϵ which are independent of z and w. We shall first prove that h(z) = 0 for $z \in \mathbb{C} - V$. Let W_1 be a component of $\mathbb{C} - \operatorname{clos} V$. If W_1 is unbounded, using the fact that M contains all polynomials in z and Mergelyan's Theorem, one sees that h(z) = 0 for $z \in W_1$. If W_1 is bounded and if M contains all rational functions whose poles are simple and lie in ∂W_1 , then h(z) = 0 for $z \in \partial W_1$, so h(z) = 0 for $z \in W_1$, by the maximum principle.

Now let W_1 and W_2 be two components of $\mathbf{C} - \operatorname{clos} V$, such that h(z) = 0 for $z \in W_1$, and such that there exists a simple closed curve $\alpha_2 \colon [0, t_2] \to \mathbf{C}$ which is twice continuously differentiable as a function of arc length t, and for which the bounded component W_2' of $\mathbf{C} - \{\alpha_2(t) \colon 0 \leq t \leq t_2\}$ is contained

in W_2 , and $\int_{1}^{t_2} |\log \delta_2 \circ \alpha_2(t)| dt = \infty$, where $\delta_2(z) = \inf\{|z - w| : w \in W_1\}$. Clearly, $|h(z)| \leq c_5 \delta_2^{\epsilon}(z)$ for all $z \in \mathbb{C}$. To see that h(z) = 0 for $z \in W_2$, pick a continuously differentiable homeomorphism T of $\operatorname{clos} \Delta_0$ onto $W_2' \cup \{\alpha_2(t): 0 \leq t \leq t_2\}$, where $\Delta_0 = \{z: |z| < 1\}$, which is holomorphic on Δ_0 . (This is possible, by [6].) Then

$$\infty = \int_0^{t_2} \left| \log(\delta_2 \circ \alpha_2(t)) \right| dt = \int_0^{2\pi} \left| \log(\delta_2 \circ T)(e^{i\theta}) d/d\theta T(e^{i\theta}) \right| d\theta$$

$$\leq \sup\{ \left| d/d\theta T(e^{i\theta}) \right| \colon 0 \leq \theta \leq 2\pi \} \int_0^{2\pi} \left| \log \delta_2 \circ T(e^{i\theta}) \right| d\theta,$$

implying $\int_0^{2\pi} |h \circ T(e^{i\theta})| d\theta = \infty$, so h(z) = 0 for $z \in W_2$, by [5], page 73. Using this technique, we can prove inductively, that if X and Y are components of $\mathbf{C} - \operatorname{clos} V$, $X \leq Y$, and h(z) = 0 for $z \in X$, then h(z) = 0 for $z \in Y$. Then, by hypothesis, h(z) = 0 for $z \in \operatorname{clos} (\mathbf{C} - \operatorname{clos} V) = \mathbf{C} - V$.

By [1], page 7, and hypothesis ii, we see that 3 holds for r = 0, so the theorem is true for r = 0 and p = 1.

We shall now show that h satisfies 3 for all r < 0. Choose an integer $m \ge 0$, and a number $a, 0 \le a < 1$, such that -2r = m + a. Let $p \in \partial V$, let f(z) be some holomorphic branch of $(z - p)^a$ defined on V, and let $w \in \mathbb{C} - V$. Define

$$H(w,z) = (-1/\pi) \int_V \lambda(\zeta) K_V^r(\zeta,\zeta) / [(\zeta-z)(\zeta-w)^m f(\zeta)] d(\zeta).$$

To see that H(w,z) = 0 for $z \in \mathbb{C} - V$, first pick m+1 distinct points z, w_1, \ldots, w_m in $\mathbb{C} - \operatorname{clos} V$, and let

$$g(\zeta) = 1/[(\zeta - z)(\zeta - w_1)(\zeta - w_2) \dots (\zeta - w_m)f(\zeta)].$$

Then $g \in A_{0,1}(V)$, so using our theorem as proven above for r = 0, there exists a sequence R_1, R_2, R_3, \ldots of elements of M, such that $\lim_{k \to \infty} ||R_k - g||_{V,0,1} = 0$. Then

$$0 = \lim_{k \to \infty} \int_{V} \lambda(\zeta) K_{V}^{r}(\zeta, \zeta) R_{k}(\zeta) d(\zeta) = \int_{V} \lambda(\zeta) K_{V}^{r}(\zeta, \zeta) g(\zeta) d(\zeta).$$

Using hypothesis ii and [2], page 386, one sees that

$$\int_{V} \lambda(\zeta) K_{V}(\zeta,\zeta) / [(\zeta-z)(\zeta-w_1) \dots (\zeta-w_n) f(\zeta)] d(\zeta)$$

is a continuous function of any one of $z \in \mathbb{C}$ and $w_1, w_2, ..., w_m \in \mathbb{C} - V$, with the remaining points fixed. So H(w,z) is continuous in $z \in \mathbb{C}$, and H(w,z) = 0 if $z \in \mathbb{C} - V$. Now define h(w,z): h(w,z) = 0 if $z \in \mathbb{C} - V$, $h(w,z) = (z-w)^m f(z)H(w,z)$ for $z \in V$. Clearly h(w,z) is continuous in $z \in \mathbb{C}$. Consider h(w,z) - h(z). It is continuous on \mathbb{C} , zero on $\mathbb{C} - V$, and since $\partial/\partial \bar{z} [h(w,z) - h(z)] = 0$ almost everywhere on V, h(w,z) - h(z) is holomorphic on V. The maximum principle then implies h(w,z) = h(z) on \mathbb{C} . Then [1], page 7, and hypothesis ii imply that h satisfies 3, completing the proof of the theorem, for p = 1.

To prove the Theorem for 1 , we modify the above as follows: If <math>r = -1 and $1 , g will be of the form <math>1/[(\zeta - z)(\zeta - w_1)(\zeta - w_2)]$, so by considering g as a linear combination of $1/(\zeta - z)$, $1/(\zeta - w_1)$, $1/(\zeta - w_2)$ for z, w_1 , and w_2 distinct, we see that H(w,z) = 0 for $z \in \mathbb{C} - V$. This implies that the Theorem holds for 1 and <math>r = -1. The case r < -1 is handled as above, by approximating g by elements of M.

REFERENCES

- 1. L. BERS, Theory of pseudo-analytic functions. Mimeographed notes, New York University, Institute for Mathematics and Mechanics, 1953.
- 2. L. BERS, Riemann's mapping theorem for variable metrics. Ann. Math. 72 (1960), 385-404.
- 3. L. BERS, An approximation theorem. J. Analyse Math. 14 (1965), 1-4.
- L. BERS, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups. Am. J. Math. 87 (1965), 196-214.
- 5. K. HOFFMAN, "Banach Spaces of Analytic Functions." Prentice-Hall, Inc., Englewood Cliffs, 1962.
- 6. S. WARSCHAWSKI, On differentiability at the boundary in conformal mapping. Proc. Am. Math. Soc. 12 (1961), 614-620.