On Mean Approximation of Holomorphic Functions

David Bell
Department of Mathematics, Rice University, Houston, Texas 77001

This paper is concerned with extensions of results found in [3]. We shall consider the problem of approximating by certain rational functions, elements of the Banach space $A_{r, p}(V)$ with norm $\left\|\|_{V, r, p}\right.$ corresponding to a bounded open subset V of the complex plane \mathbf{C} and a pair of real numbers $r \leqslant 0$ and $1 \leqslant p \leqslant \infty$.

$$
\begin{aligned}
& A_{r, p}(V)=\left\{f: f: V \rightarrow \mathbf{C} \text { is holomorphic and }\|f\|_{V, r, p}<\infty\right\}, \\
& \|f\|_{V, r, p}=\left[\int_{V} K_{V}^{r}(\zeta, \zeta)|f(\zeta)|^{p} d(\zeta)\right]^{1 / p} \quad \text { for } 1 \leqslant p<\infty \\
& \|f\|_{V, r, \infty}=\sup \left\{K_{V}^{r}(\zeta, \zeta)|f(\zeta)|: \zeta \in V\right\} .
\end{aligned}
$$

Here $K_{V}(z, \zeta)$ denotes the Bergman kernel function of V, and $d(\zeta)$ denotes integration in ζ in planar measure.

Definition. Let X and Y be components of \mathbf{C} - $\operatorname{clos} V$ where clos S means the closure of the set S in \mathbf{C}. We use the notation $X \leqslant Y$ to mean that there exists a sequence $W_{1}=X, W_{2}, \ldots, W_{n}=Y$ of (not necessarily distinct) components of C - clos V with the following property: For each $j=2,3, \ldots, n$ there exists a simple closed curve $\alpha_{j}:\left[0, t_{j}\right] \rightarrow \operatorname{clos} W_{j} ;$ such that
a. α_{j} is twice continuously differentiable as a function of arc length t.
b. The bounded component of $\mathbf{C}-\left\{\alpha_{j}(t): 0 \leqslant t \leqslant t_{j}\right\}$ is contained in W_{j}.
c. $\int_{0}^{t_{j}}\left|\log \delta_{j} \circ \alpha_{j}(t)\right| d t=\infty$, where $\delta_{j}(z)=\inf \left\{|z-w|: w \in W_{j-1}\right\}$.

The relation \leqslant will then be symmetric and transitive.
Theorem. Let V be a bounded open subset of \mathbf{C} such that
i. $\operatorname{clos}(\mathbf{C}-\cos V)=\mathbf{C}-V$, and
ii. there exist constants $c_{1}>0$ and $c_{2}<\infty$ such that $c_{1} \leqslant K_{V}(z, z) \delta_{V}{ }^{2}(z) \leqslant c_{2}$ for all $z \in V$, where $\delta_{V}(z)=\inf \{|z-w|: w \in \mathbf{C}-V\}$. (The latter condition will automatically hold if each component of V is simply connected.) If $2 r$ is not an integer, assume that each component of V is simply connected.

Let M be a linear subspace of $A_{r, p}(V)$ such that
iii. given a component Y of $\mathbf{C}-\operatorname{clos} V$, either $W_{0}=$ (the unbounded component of $\mathbf{C}-\operatorname{clos} V) \leqslant Y$, or there exists a component X of $\mathbf{C}-\operatorname{clos} V$ such that
$X \leqslant Y$ and M contains every rational function all of whose poles are simple and lie in ∂X (the boundary of X). (If ∂X is a finite collection of disjoint Jordan curves, we need only assume that M contains all rational functions all of whose poles are simple and lie in some fixed subarc of ∂X.)

If $r \leqslant 0$ and $p=1$, or if $r \leqslant-1$ and $1<p<2$, then M is dense in $A_{r, p}(V)$.

Remarks. (i) Without knowing anything about the relationship between the various components of $\mathbf{C}-\operatorname{clos} V$, one sees that letting M consist of all rational functions all of whose poles are simple and lie in $\left(\mathbf{C}-\operatorname{clos} W_{0}\right) \cap \partial V$, one can always assert the above density properties of M.
(ii) In the event that $W_{0} \leqslant W$ for every component W of $\mathbf{C}-\operatorname{clos} V$, one can take M to be the set $\mathbf{C}[z]$ of all polynomials in z.

Proposition 1. Let V be a bounded open subset of \mathbf{C} such that $\mathbf{C}-V$ has only finitely many components, and each has interior points. Then for $r \leqslant 0$, $A_{r, 1}(V) \subset A_{r-1, \infty}(V)$ and the inclusion map is continuous.

Corollary 1. If M, V, r and p satisfy the hypotheses i, ii, and iii of the Theorem, and the hypotheses of Proposition 1 , then every $L_{p}(1 \leqslant p \leqslant \infty)$ analytic function on V is the limit under the norm $\left\|\|_{V,-1, \infty}\right.$ of a suitable sequence of elements of M.

We next see that hypothesis iii of the Theorem is in certain circumstances a condition which is necessary for M to be dense in $A_{r, p}(V)$.

Proposition 2. Let α, β and γ be three simple closed curves such that γ lies inside β, and β lies inside α. We allow the possibility that α and β, or β and γ have points in common. Assume that $\beta:[0, L] \rightarrow \mathbf{C}$ is twice continuously differentiable as a function of arc length. Let D be the open set consisting of all points strictly inside α and strictly outside γ. Suppose that $\int_{0}^{L} \log \delta_{D} \circ \beta(t) d t>-\infty$. Then for any constant $c>0$ and any $r \leqslant 0$, the polynomials belonging to $\left\{f:\|f\|_{D, r, 1} \leqslant c\right\}$ form a normal family on the set of points inside α.

Corollary 2. Let V be an open subset of \mathbf{C}, M some collection of rational functions all of whose poles are simple and lie in $\mathbf{C}-V$. Let α, β, and γ be as in Proposition 2, and assume that the set D described in Proposition 2 is contained in V. If there exists a limit point of $\mathbf{C}-V$ inside β, and if the set of all points z lying inside α such that at least one element of M has a pole at z, is finite, then for $r \leqslant 0$ and $1 \leqslant p<2, M$ is not dense in $A_{r, p}(V)$.

Example. Consider the situation depicted in Figure 1. Assume that α and β are simple closed Jordan curves, tangent to the real axis at each intersection point,

$$
\int_{-1 / 2}^{1 / 2} \log \delta_{V}(t) d t>-\infty, \quad \text { and } \quad \int_{0}^{L} \log \delta_{\mathbf{C}-W_{0}} \circ \alpha(t) d t=-\infty
$$

where $\alpha:[0, L] \rightarrow \mathbf{C}$ is parametrized by arc length and is twice continuously differentiable, and $W_{0}=\{z:|z|>1\}$. Then the set of all rational functions all of whose poles are simple and lie inside (or on) β is dense in $A_{r, p}(V)$ if $r \leqslant 0$ and $p=0$, or if $r \leqslant-1$ and $1<p<2$. Conversely, if $r \leqslant 0$ and $1 \leqslant p \leqslant \infty$, if M is some collection of rational functions all of whose poles are simple and lie in C - V, and if M is dense in $A_{r, p}(V)$, then there exist infinitely many points z inside or on β for which one can find an element of M having a pole at z.

Fig. 1.
The existence of constants $c_{1}>0, c_{2}<\infty$ such that $c_{1} \leqslant K_{V}(\zeta, \zeta) \delta_{V}{ }^{2}(\zeta) \leqslant c_{2}$ for all $\zeta \in V$: To see that this condition holds only for special V, note that $K_{V}=K_{V}$, whenever V^{\prime} is obtained from V by removing finitely many points. On the other hand, we have: Suppose V satisfies the hypotheses of Proposition 1. Let S_{0}, \ldots, S_{n} be the components of $\mathbf{C}-V$, where S_{0} is unbounded, and assume that there exists an interior point p_{j} of S_{j}, for each $j=1,2, \ldots, n$. Then there exist constants $c_{1}>0$ and $c_{2}<\infty$ (perhaps depending on V) such that $c_{1} \leqslant K_{V}(\zeta, \zeta) \delta_{V}{ }^{2}(\zeta) \leqslant c_{2}$ for all $\zeta \in V$.

Proof. (i) Choose $c_{1}>0$ and $c_{2}<\infty$ such that $c_{1} \leqslant K_{\mathrm{D}}(z, z) \delta_{\mathrm{D}}{ }^{2}(z) \leqslant c_{2}$ for every simply-connected domain D in \mathbf{C}, and every z in D. Given $z_{0} \in \partial S_{0} \cap \partial V$, one can find a neighborhood W of z_{0} such that every component of $E=W \cap V$ is simply connected. On the other hand, $V \subset F=V \cup S_{1} \cup \ldots \cup S_{n}$, where
each component of F is simply-connected. Choose a neighborhood H of z_{0} such that for $z \in H \cap V, \delta_{E}(z)=\delta_{V}(z)=\delta_{F}(z)$. Then for $z \in H \cap V$,

$$
c_{1} \leqslant K_{F}(z, z) \delta_{F}^{2}(z) \leqslant K_{V}(z, z) \delta_{V}^{2}(z) \leqslant K_{E}(z, z) \delta_{E}^{2}(z) \leqslant c_{2} .
$$

So $c_{1} \leqslant K_{V}(z, z) \delta_{V}^{2}(z) \leqslant c_{2}$ holds for $z \in V \cap W$, for some neighborhood W (generally, one different from the above) of $\partial S_{0} \cap \partial V$.
(ii) Next, consider $z_{0} \in S_{j} \cap \partial V, 1 \leqslant j \leqslant n$, and let $0<\epsilon<1$. Define $T(z)=1 /\left(z-p_{j}\right)$ for $z \in \mathbf{C}-\left\{p_{j}\right\}$. Then the bounded open set $T(V)$ satisfies the hypotheses of Proposition 1, and $T\left(z_{0}\right)$ is in the unbounded component of C $-T(V)$, so by (i), one can choose a neighborhood W of z_{0} such that if $z \in W \cap V$, then

$$
c_{1} \leqslant K_{T(Y)}(T(z), T(z)) \delta_{T(V)}^{2}(T(z)) \leqslant c_{2} .
$$

Furthermore, by choosing W sufficiently fine, one can also easily show that for $z \in W \cap V$,

$$
\left|T^{\prime}(z)\right|(1-\epsilon) \leqslant \delta_{T(\gamma)}(T(z)) / \delta_{V}(z) \leqslant\left|T^{\prime}(z)\right|(1+\epsilon) .
$$

It then follows from the transformation formula for the Bergman kernel function, that for $z \in W \cap V$,

$$
(1+\epsilon)^{-2} c_{1} \leqslant K_{V}(z, z) \delta_{V}^{2}(z) \leqslant(1-\epsilon)^{-2} c_{2} .
$$

By the compactness of ∂V, this also holds for $z \in W \cap V$, where W is some open set containing ∂V.

Hence, if V satisfies the hypotheses of Proposition 1, then there exist constants $c_{1}>0$ and $c_{2}<\infty$ (which may depend on V), such that $c_{1} \leqslant K_{V}(z, z) \delta_{V}^{2}(z) \leqslant c_{2}$ for all $z \in V$.

Proof of Proposition 1. Let $z_{0} \in \partial V$, where V satisfies the hypotheses of Proposition 1. Choose a neighborhood N of z_{0}, such that every component of $N \cap V$ is simply connected. As shown in [4], page 199, one can find a constant c such that for any bounded simply connected domain D, any $r \leqslant 0$, and any $f \in A_{r, 1}(D),\|f\|_{D, r-1, \infty} \leqslant c\|f\|_{D, r, 1}$. So

$$
\|f\|_{V, r, 1} \geqslant\|f\|_{\mathcal{N} \cap V, r, 1} \geqslant c\|f\|_{\mathcal{N} \cap V, r-1, \infty} \geqslant c^{\prime}\left|\delta_{\mathcal{N} \cap V}^{2-2 r}(z) f(z)\right|
$$

for $z \in N \cap V$. Then for some constant $c^{\prime \prime}$ and a sufficiently fine neighborhood H of $z_{0},\|f\|_{V, r, 1} \geqslant c^{\prime \prime} K_{V}^{r-1}(z, z)|f(z)|$ for $z \in H \cap V$. It is also easy to show that similar estimates hold on compact subsets of V, concluding the proof of Proposition 1.

Proof of Corollary 1. For $1 \leqslant p \leqslant \infty$, we have the continuous inclusions

$$
A_{0, \mathrm{p}}(V) \subset A_{0,1}(V) \subset A_{-1, \infty}(V) .
$$

Proof of Proposition 2. There exists a constant c, such that for any $f \in A_{r, 1}(V)$ and $z \in V,|f(z)| \leqslant c \delta_{V}^{2 r-2}(z)\|f\|_{r, 1, V}$. The result then follows from the results in [6] on the differentiability of a conformal mapping T of the unit disk onto the set of points inside β, and the application of the Poisson-Jensen formula to the functions $f \circ T$. (If f has a zero of order $n>0$ at $T(0)$, we, instead, consider $f \circ T(z) / z^{n}$, whose modulus is greater than or equal to that of $f \circ T$ for $|z| \leqslant 1$, with equality for $|z|=1$.)

Proof of the Theorem. Let $1 \leqslant p<2$, and let $l: A_{r, p}(V) \rightarrow \mathbf{C}$ be a continuous linear functional, such that $l(M)=\{0\}$. It will be shown that $l\left(A_{r, p}(V)\right)=\{0\}$. Obtain a function $\lambda \in L_{q}(\mathbf{C})$ (where $1 / p+1 / q=1$), such that $\lambda(z)=0$ for $z \in \mathbf{C}-V$, and

$$
l(f)=\int_{V} \lambda(\zeta) K_{V}^{r}(\zeta, \zeta) f(\zeta) d(\zeta)
$$

for each $f \in A_{r, p}(V)$. We shall construct a function $h: \mathbf{C} \rightarrow \mathbf{C}$, such that

1. h has generalized partial derivatives which satisfy $\partial / \partial z h(z)=0$ if $z \in \mathbf{C}-V$, and $\partial / \partial z \bar{z}(z)=K_{V}^{r}(z, z) \lambda(z)$ almost everywhere on V.
2. h is continuous on C, and $h(z)=0$ if $z \in C-V$.
3. If $p=1$, then for all $z \in V$,

$$
|h(z)| \leqslant c_{3} K_{V}^{r}(z, z) \delta_{V}(z)\left[1+\log ^{+}\left(1 / \delta_{V}(z)\right)\right]
$$

for some constant c_{3} which does not depend on z. Here $\log ^{+}(t)$ means $\max \{0, \log t\}$.
4. If $1<p<2$, then for $z \in V$,

$$
|h(z)| \leqslant c_{p} K_{V}^{r}(z, z) \delta_{V}^{1-2 / q}(z)
$$

where c_{p} is a constant which does not depend on z.
We then construct the function

$$
\omega_{n}(z)=j\left(\left[\log \log \left(\rho / \delta_{V}(z)\right)\right] / n\right),
$$

where $j: R \rightarrow R$ is continuously differentiable ($R=$ the real numbers), $j(t)=1$ for $t \leqslant 0, j(t)=0$ for $t \geqslant 1$, and $0 \leqslant j(t) \leqslant 1$ for $0<t<1$, and $\rho=1+$ the diameter of V. By the boundedness of $j^{\prime}(t)$ and the fact that δ_{V} is Lipschitzian, we can find a constant c_{4} such that for all $z \in V$,
5. $\left|\partial / \partial z \omega_{n}(z)\right| \leqslant c_{4} /\left[n \delta_{V}(z) \log \left(\rho / \delta_{V}(z)\right)\right]$.

Here c_{4} does not depend on n. Here, too, differentiation is in the generalized sense.

One next shows that, for $f \in A_{r, p}(V)$,
6. $\int_{V} \omega_{n}(\zeta) f(\zeta) K_{V}^{r}(\zeta, \zeta) \lambda(\zeta) d(\zeta)=-\int_{V}\left(\partial \mid \partial \xi \omega_{n}(\zeta)\right) f(\zeta) h(\zeta) d(\zeta)$.

We first prove 6. Let n be fixed; then choose a compact set L in V, and a
sequence g_{k} of functions on \mathbf{C} into \mathbf{C}, with continuous first partial derivatives with respect to x and to y on \mathbf{C}, such that L contains the support of ω_{n} and of each g_{k}, and

$$
\lim _{k \rightarrow \infty}\left\|\omega_{n}-g_{k}\right\|_{V, 0, p}=0=\lim _{k \rightarrow \infty}\left\|\partial / \partial \bar{z} \omega_{n}-\partial / \partial \bar{z} g_{k}\right\| v, 0, p .
$$

Furthermore, for each k,

$$
\int_{V} g_{k}(\zeta) f(\zeta) K_{V}^{r}(\zeta, \zeta) \lambda(\zeta) d(\zeta)=-\int_{V}\left(\partial \partial \bar{\zeta} g_{k}(\zeta)\right) h(\zeta) d(\zeta)
$$

by 1 . Hence 6 follows by taking the limit as k approaches ∞.
If $p=1$, using 3,5 , and 6 , one sees that
$|l(f)|$
$\leqslant \lim _{n \rightarrow \infty} \int_{V}|f(\zeta)| c_{3} K_{V}^{r}(\zeta, \zeta) \delta_{V}(\zeta)\left[1+\log ^{+}\left(1 / \delta_{V}(\zeta)\right)\right] c_{4} /\left[n \delta_{V}(\zeta) \log \left(\rho / \delta_{V}(\zeta)\right] d(\zeta)\right.$
$\leqslant \lim _{n \rightarrow \infty}(l / n) c_{3} c_{4}[1+1 / \log \rho] \mid\|f\|_{V, r, 1}=0$,
proving the theorem for $p=1$.
If $1<p<2$, using hypothesis ii and 4,5 , and 6 , one sees that

$$
\begin{aligned}
& \left|\int_{\Delta} \omega_{n}(\zeta) f(\zeta) K_{V}^{r}(\zeta, \zeta) \lambda(\zeta) d(\zeta)\right| \\
& \leqslant(1 / n) \int_{\Delta}|f(\zeta)| c_{p} K^{r / p}(\zeta, \zeta) c_{1}^{r(1-1 / p)} \delta_{V}^{s}(\zeta) c_{4} / \log \left(\rho / \delta_{V}(\zeta)\right) d(\zeta)
\end{aligned}
$$

where $s=-2(r-r / p)-2 / q=-2(r+1) / q$. Then $l(f)=0$ if $r \leqslant-1$.
Proof of $1-4$. For $z \in \mathbf{C}$ let

$$
h(z)=(-1 / \pi) \int_{V} \lambda(\zeta) K_{V}^{r}(\zeta, \zeta)[1 /(\zeta-z)] d(\zeta)
$$

By [1], page 7, and [2], page 386, we see that h is continuous on \mathbf{C}, holomorphic on the interior of $\mathbf{C}-V$, satisfies 1 , and for all z and w in \mathbf{C},

$$
|h(z)-h(w)| \leqslant c_{5}|z-w|^{\epsilon}
$$

for some positive constants c_{5} and ϵ which are independent of z and w. We shall first prove that $h(z)=0$ for $z \in \mathbf{C}-V$. Let W_{1} be a component of $\mathbf{C}-\operatorname{clos} V$. If W_{1} is unbounded, using the fact that M contains all polynomials in z and Mergelyan's Theorem, one sees that $h(z)=0$ for $z \in W_{1}$. If W_{1} is bounded and if M contains all rational functions whose poles are simple and lie in ∂W_{1}, then $h(z)=0$ for $z \in \partial W_{1}$, so $h(z)=0$ for $z \in W_{1}$, by the maximum principle.

Now let W_{1} and W_{2} be two components of $\mathbf{C}-\operatorname{clos} V$, such that $h(z)=0$ for $z \in W_{1}$, and such that there exists a simple closed curve $\alpha_{2}:\left[0, t_{2}\right] \rightarrow \mathbf{C}$ which is twice continuously differentiable as a function of arc length t, and for which the bounded component W_{2}^{\prime} of $\mathbf{C}-\left\{\alpha_{2}(t): 0 \leqslant t \leqslant t_{2}\right\}$ is contained
in W_{2}, and $\int_{0}^{t 2}\left|\log \delta_{2} \circ \alpha_{2}(t)\right| d t=\infty$, where $\delta_{2}(z)=\inf \left\{|z-w|: w \in W_{1}\right\}$. Clearly, $|h(z)| \leqslant c_{5} \delta_{2}{ }^{\epsilon}(z)$ for all $z \in \mathbf{C}$. To see that $h(z)=0$ for $z \in W_{2}$, pick a continuously differentiable homeomorphism T of $\operatorname{clos} \Delta_{0}$ onto $W_{2}{ }^{\prime} U\left\{\alpha_{2}(t)\right.$: $\left.\left.0 \leqslant t \leqslant t_{2}\right)\right\}$, where $\Delta_{0}=\{z:|z|<1\}$, which is holomorphic on $\bar{\Delta}_{0}$. (This is possible, by [6].) Then

$$
\begin{aligned}
\infty & =\int_{0}^{t 2}\left|\log \left(\delta_{2} \circ \alpha_{2}(t)\right)\right| d t=\int_{0}^{2 \pi}\left|\log \left(\delta_{2} \circ T\right)\left(e^{i \theta}\right) d\right| d \theta T\left(e^{i \theta}\right) \mid d \theta \\
& \leqslant \sup \left\{|d| d \theta T\left(e^{i \theta}\right) \mid: 0 \leqslant \theta \leqslant 2 \pi\right\} \int_{0}^{2 \pi}\left|\log \delta_{2} \circ T\left(e^{i \theta}\right)\right| d \theta
\end{aligned}
$$

implying $\int_{0}^{2 \pi}\left|h \circ T\left(e^{i \theta}\right)\right| d \theta=\infty$, so $h(z)=0$ for $z \in W_{2}$, by [5], page 73. Using this technique, we can prove inductively, that if X and Y are components of $\mathbf{C}-\operatorname{clos} V, X \leqslant Y$, and $h(z)=0$ for $z \in X$, then $h(z)=0$ for $z \in Y$. Then, by hypothesis, $h(z)=0$ for $z \in \operatorname{clos}(\mathbf{C}-\cos V)=\mathbf{C}-V$.

By [1], page 7, and hypothesis ii, we see that 3 holds for $r=0$, so the theorem is true for $r=0$ and $p=1$.

We shall now show that h satisfies 3 for all $r<0$. Choose an integer $m \geqslant 0$, and a number $a, 0 \leqslant a<1$, such that $-2 r=m+a$. Let $p \in \partial V$, let $f(z)$ be some holomorphic branch of $(z-p)^{a}$ defined on V, and let $w \in \mathbf{C}-V$. Define

$$
H(w, z)=(-1 / \pi) \int_{V} \lambda(\zeta) K_{V}^{r}(\zeta, \zeta) /\left[(\zeta-z)(\zeta-w)^{m} f(\zeta)\right] d(\zeta)
$$

To see that $H(w, z)=0$ for $z \in \mathbf{C}-V$, first pick $m+1$ distinct points z, w_{1}, \ldots, w_{m} in $\mathbf{C}-\operatorname{clos} V$, and let

$$
g(\zeta)=1 /\left[(\zeta-z)\left(\zeta-w_{1}\right)\left(\zeta-w_{2}\right) \ldots\left(\zeta-w_{m}\right) f(\zeta)\right]
$$

Then $g \in A_{0,1}(V)$, so using our theorem as proven above for $r=0$, there exists a sequence $R_{1}, R_{2}, R_{3}, \ldots$ of elements of M, such that $\lim \left\|R_{k}-g\right\|_{V, 0,1}=0$. Then

$$
0=\lim _{k \rightarrow \infty} \int_{V} \lambda(\zeta) K_{V}^{r}(\zeta, \zeta) R_{k}(\zeta) d(\zeta)=\int_{V} \lambda(\zeta) K_{V}^{r}(\zeta, \zeta) g(\zeta) d(\zeta)
$$

Using hypothesis ii and [2], page 386, one sees that

$$
\int_{V} \lambda(\zeta) K_{V}^{r}(\zeta, \zeta) /\left[(\zeta-z)\left(\zeta-w_{1}\right) \ldots\left(\zeta-w_{n}\right) f(\zeta)\right] d(\zeta)
$$

is a continuous function of any one of $z \in \mathbf{C}$ and $w_{1}, w_{2}, \ldots, w_{m} \in \mathbf{C}-V$, with the remaining points fixed. So $H(w, z)$ is continuous in $z \in \mathbf{C}$, and $H(w, z)=0$ if $z \in \mathbf{C}-V$. Now define $h(w, z): h(w, z)=0$ if $z \in \mathbf{C}-V$, $h(w, z)=(z-w)^{m} f(z) H(w, z)$ for $z \in V$. Clearly $h(w, z)$ is continuous in $z \in \mathbf{C}$. Consider $h(w, z)-h(z)$. It is continuous on \mathbf{C}, zero on $\mathbf{C}-V$, and since $\partial / \partial z[h(w, z)-h(z)]=0$ almost everywhere on $V, h(w, z)-h(z)$ is holomorphic on V. The maximum principle then implies $h(w, z)=h(z)$ on \mathbf{C}.

Then [1], page 7, and hypothesis ii imply that h satisfies 3, completing the proof of the theorem, for $p=1$.

To prove the Theorem for $1<p<2$, we modify the above as follows: If $r=-1$ and $1<p<2, g$ will be of the form $1 /\left[(\zeta-z)\left(\zeta-w_{1}\right)\left(\zeta-w_{2}\right)\right]$, so by considering g as a linear combination of $1 /(\zeta-z), 1 /\left(\zeta-w_{1}\right), 1 /\left(\zeta-w_{2}\right)$ for z, w_{1}, and w_{2} distinct, we see that $H(w, z)=0$ for $z \in \mathbf{C}-V$. This implies that the Theorem holds for $1<p<2$ and $r=-1$. The case $r<-1$ is handled as above, by approximating g by elements of M.

References

1. L. Bers, Theory of pseudo-analytic functions. Mimeographed notes, New York University, Institute for Mathematics and Mechanics, 1953.
2. L. Bers, Riemann's mapping theorem for variable metrics. Ann. Math. 72 (1960), 385-404.
3. L. Bers, An approximation theorem. J. Analyse Math. 14 (1965), 1-4.
4. L. Bers, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups. Am. J. Math. 87 (1965), 196-214.
5. K. Hoffman, "Banach Spaces of Analytic Functions," Prentice-Hall, Inc., Englewood Cliffs, 1962.
6. S. Warschawski, On differentiability at the boundary in conformal mapping. Proc. Am. Math. Soc. 12 (1961), 614-620.
