JOURNAL OF APPROXIMATION THEORY 1, 412-419 (1968)

On Mean Approximation of Holomorphic Functions

Davip BELL

Department of Mathematics, Rice University, Houston, Texas 77001

This paper is concerned with extensions of results found in [3]. We shall
consider the problem of approximating by certain rational functions, elements
of the Banach space 4, (V) withnorm | |l ,. ,corresponding to a bounded open
subset ¥ of the complex plane € and a pair of real numbersr < Oand 1 < p < o,

A, ,(V)={f:f: V — Cis holomorphic and || flly., , < <},

Wl = [, &G DIFOPAQ)'®  forl<p <,

1Sl r. = sUp{K (L, O AD: L V3

Here K, (z,{) denotes the Bergman kernel function of V, and d({) denotes
integration in { in planar measure.

DEFINITION. Let X and Y be components of € — clos ¥ where clos.S means the
closure of the set Sin C. We use the notation X < Y to mean that there exists a
sequence W, = X, W, ..., W, = Y of (not necessarily distinct) components of
C — clos V' with the following property: For each j= 2,3, ..., n there exists a
simple closed curve o;: [0,¢;] — clos W;; such that

a. «;is twice continuously differentiable as a function of arc length 7.
b. The bounded component of € — {x;(¢): 0 < ¢ < ;} is contained in W,.

c. f;’ |logd; o o ,(¢)|dt = =, where 8,(z) = inf{|z — w|: w e W;_,}.

The relation < will then be symmetric and transitive.

THEOREM. Let V be a bounded open subset of C such that

i. clos(C—closV)=C—V, and

ii. there exist constants ¢, > 0 and ¢, < o such that ¢, < Ky(2,2)8,%(z) < ¢z
Jor all z eV, where 8,(2) = inf{|z — w|: w € C — V}. (The latter condition will
automatically hold if each component of V' is simply connected.) If 2r is not an

integer, assume that each component of V is simply connected.
Let M be a linear subspace of 4,, (V) such that

iil. given a component Y of C — closV, either Wy = (the unbounded compon-

ent of € —clos V) < Y, or there exists a component X of C — closV such that
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X < Y and M contains every rational function all of whose poles are simple and
lie in 0 X (the boundary of X). (If 0 X is a finite collection of disjoint Jordan curves,
we need only assume that M contains all rational functions all of whose poles are
simple and lie in some fixed subarc of 9X.)

Ifr<Oandp=1,o0rifr<—landl <p <2, then Misdensein A, (V).

Remarks. (i) Without knowing anything about the relationship between the
various components of € —closV, one sees that letting M consist of all
rational functions all of whose poles are simple and lie in (C — clos W) N 9V,
one can aiways assert the above density properties of M.

(ii) Intheevent that W, < W for every component W of € — clos V, one can
take M to be the set C[z] of all polynomials in z.

ProOPOSITION 1. Let V' be a bounded open subset of € such that € — V has
only finitely many components, and each has interior points. Then for r <0,
A, (V)< A,y (V) and the inclusion map is continuous.

CoroLLARY 1. If M, V, r and p satisfy the hypotheses i, ii, and iii of the
Theorem, and the hypotheses of Proposition 1, then every L, (1 < p < «) analytic
Junction on V is the limit under the norm || |y -, . of a suitable sequence of
elements of M.

We next see that hypothesis iii of the Theorem is in certain circumstances a
condition which is necessary for M to be dense in 4, (V).

PROPOSITION 2. Let o, f3 and vy be three simple closed curves such that v lies
inside 3, and B lies inside . We allow the possibility that o and B, or B and y have
points in common. Assume that B: [0,L] — C is twice continuously differentiable
as a function of arc length. Let D be the open set consisting of all points strictly
inside o and strictly outside vy. Suppose that [§logdy o B(t)dt > —cw. Then for
any constant ¢ > 0 and any r <0, the polynomials belonging to {f: || flp,,1 < ¢}
form anormal family on the set of points inside o.

COROLLARY 2. Let V be an open subset of C, M some collection of rational
Sfunctions all of whose poles are simple and lie in C— V. Let o, B, and y be as in
Proposition 2, and assume that the set D described in Proposition 2 is contained in
V. If there exists a limit point of C — V inside B, and if the set of all points z lying
inside o such that at least one element of M has a pole at z, is finite, then for
r<0andl <p<2, Misnotdensein A, (V).
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Example. Consider the situation depicted in Figure 1. Assume that « and 8
are simple closed Jordan curves, tangent to the real axis at each intersection
point,

fl—/lz/z logdy() dt > =, and fz logéc-w, 0 a(t) dt = —,

where «: [0,L] — C is parametrized by arc length and is twice continuously
differentiable, and W, = {z: |z| > 1}. Then the set of all rational functions all
of whose poles are simple and lie inside (or on) 8is dense in 4, (V) if r < 0 and
p=0,0orifr<—1and 1 <p <2 Conversely, if r<Oand 1l <p<,if Mis
some collection of rational functions all of whose poles are simple and lie in
C — V, and if M is dense in A4, ,(V), then there exist infinitely many points z
inside or on 3 for which one can find an element of M having a pole at z.

Fia. 1.

The existence of constants ¢y > 0, ¢, < 0 suchthat ¢, < Ky(£, 0)8,%({) < ¢, for
all { € V: To see that this condition holds only for special ¥, note that K, = Ky
whenever V' is obtained from V by removing finitely many points. On the other
hand, we have: Suppose V satisfies the hypotheses of Proposition1. Let S, ..., S,
be the components of € —V, where S, is unbounded, and assume that there
exists an interior point p; of S, for eachj=1,2, ..., n. Then there exist constants
¢, >0 and ¢, < o (perhaps depending on V) such that ¢, < Ky (L, D)8, (D < e
forall{eV.

Proof. (i) Choose ¢, >0 and ¢, < o such that ¢, < Kp(z,2)8p%(z) < ¢, for
every simply-connected domain D in C, and every zin D. Given z, € 8§, N 9V,
one can find a neighborhood W of z, such that every componentof E= W N V
is simply connected. On the other hand, V< F=V U S, U... US,, where
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each component of F is simply-connected. Choose a neighborhood H of z
such that for z € H N V, 8y(z) = 8,(2) = 8¢(2). Then forze H N V,

¢, < Ki(z,2) 851(2) < Ky(2,2) 8,%(2) < Kp(2,2) 8,%(2) < ¢3.

So ¢; < Ky(z,2) 8,(2) < ¢, holds for z € ¥V N W, for some neighborhood W
(generally, one different from the above) of 8S; N 2V.

(ii) Next, consider z,€S; NV, 1<j<n, and let O0<e<1. Define
T(2)=1/(z— py)forz € C —{p;}. Then the bounded open set T(V) satisfies the
hypotheses of Proposition 1, and T'(z,) is in the unbounded component of
C —-T(V), so by (i), one can choose a neighborhood W of z, such that if
ze WNV,then

¢y < Kro(T(2), T(2)) 850)(T(2) < .

Furthermore, by choosing W sufficiently fine, one can also easily show that for
zeWnNnyVy,

IT" @)1 ~ €) <373 (T)/3v(2) < [T')|(A + ).

It then follows from the transformation formula for the Bergman kernel
function, thatforze W NV,

L+ ¢ %c; < Ky(z,2) §%(2) < (1 — €)%

By the compactness of 0¥, this also holds for z € W N 1, where Wis some open
set containing V.

Hence, if V satisfies the hypotheses of Proposition 1, then there exist
constants ¢, >0 and ¢, <~ (which may depend on V), such that
¢, < Kp(z,2)8,%z) < c, forallze V.

Proof of Proposition 1. Let z, € 0V, where V satisfies the hypotheses of
Proposition 1. Choose a neighborhood N of z,, such that every component of
N N Vissimply connected. As shown in [4], page 199, one can find a constant ¢
such that for any bounded simply connected domain D, any r <0, and any
fed, (D), [1filpr-1,0<cllflpy1 So

WAy ea=fllvavea=elflvave-i1o=¢ 18@,3;(z)f(z)|

forz € N (1 V. Then for some constant ¢” and a sufficiently fine neighborhood
Hofzp, || fllv ».1 = ¢" KNz, 2)| f(2)| for z € H N V. It is also easy to show that
similar estimates hold on compact subsets of ¥, concluding the proof of
Proposition 1.

Proof of Corollary 1. For 1 < p < », we have the continuous inclusions
Ao (V)< Ao (V)<= 4y (V).
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Proof of Proposition 2. There exists a constant c, such that for any f'€ A4, (V)
and z € V, | f(2)| < ¢8F2(2)|If |l 1 v- The result then follows from the results
in [6] on the differentiability of a conformal mapping T of the unit disk onto the
set of points inside 8, and the application of the Poisson-Jensen formula to the
functions fo 7. (If f has a zero of order » > 0 at T(0), we, instead, consider
J o T(z2)/z", whose modulus is greater than or equal to that of f o T'for |z < 1,
with equality for |z] =1.)

Proof of the Theorem. Let 1 <p < 2,and let[: 4, ,(V) — € be a continuous
linear functional, such that /(M) = {0}. It wiil be shown that /(4. ,(V)) = {0}.
Obtain a function A € L,(C) (where 1/p+1/g=1), such that Az)=0 for
ze€C~—V, and

1) =, \O K (& D Q)

foreach f e A4, (V). We shall construct a function #: € — C, such that

1. & has generalized partial derivatives which satisfy 0/0zh(z)=0 if
z € C—V, and 8/dzh(z) = K,/ (z,2) A(z) almost everywhere on V.

2. hiscontinuous on C,and 4{(z) =0ifze C ~ V.
3. Ifp=1,thenforaliz € ¥,
@] < ¢3 Ky'(2,2) 8y (D) 1 + log*(1/8(2)]
for some constant ¢; which does not depend on z. Here log*(¢) means
max {0,logt}.
4. If1 <p<2thenforzeV,
[h(z)| < ¢ Kv'(2,2) 8,7%%(2),

where ¢, is a constant which does not depend on z.
We then construct the function

wn(2) = j(llog log(p/dy(2)]/m),

where j: R — R is continuously differentiable (R = the real numbers), j(z) = 1
for r<0, j(t)=0for t>1, and 0<j(t) <1 for 0 <s<1, and p=1+the
diameter of V. By the boundedness of j(¢) and the fact that 8, is Lipschitzian,
we can find a constant ¢, such that forallz e V,

5. 0/0Zwn(2)| < c4/[ndy(2) log(p[d(2))].
Here ¢, does not depend on n. Here, too, differentiation is in the generalized

sense.
One next shows that, for f € 4, (V),

6. [, 0 0f O KSEHNDAQ) =~ @1 QY HQ) d(.

We first prove 6. Let n be fixed; then choose a compact set L in ¥, and a
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sequence g, of functions on € into C, with continuous first partial derivatives
with respect to x and to y on C, such that L contains the support of w, and of
each g, and

lim {lw, ~ gillv 0, =0= 1im [|9/0Zewy, — a/ang“V,o,p-

k- k>0

Furthermore, for each k,

[, 607 O K@ OND D = -, @l HD O,

by 1. Hence 6 follows by taking the limit as k approaches .
If p =1, using 3, 5, and 6, one sees that

O]
<lim fy 1S (Dles Ky (€, §) 8D + log™(1/8,(D)] ca/ Indy(£) log(p/3, (D)1 d(&)

< lim (1/n) ¢y cq{L + Hlogpllflly »,1 =0,

n—o

proving the theorem for p = 1.
If 1 < p < 2, using hypothesis ii and 4, 5, and 6, one sees that

[, wDf QK& DNAD
<) [, 17 Dle, K7 =1 8,5(D ey logpl8n(D) d(D),
where s = —2(r — rp) — 2[g = —2(r + 1)/q. Then I(f) =0 if r <-1.

Proof of 1-4. For z € Clet
h@) = C1m) [ A0 Ky (& O - 2)1d():

By [1], page 7, and [2], page 386, we see that & is continuous on C, holomorphic
on the interior of € — V, satisfies 1, and forall zand win C,

|h(z) — h(w)| < ¢slz — w|¢

for some positive constants cs and e which are independent of z and w. We shail
first prove that i(z) = 0 for z € € — V', Let W, be a component of € — clos V.
If W, is unbounded, using the fact that M contains all polynomials in z and
Mergelyan’s Theorem, one sees that h(z) = 0 for z € W,. If W, is bounded and
if M contains all rational functions whose poles are simple and lie in 9, then
h(z) =0 for z € W}, so h(z) = 0 for z € W;, by the maximum principle.

Now let W, and W, be two components of € — closV, such that h(z) =0
for z € W), and such that there exists a simple closed curve «,: [0,t,] — C
which is twice continuously differentiable as a function of arc length ¢, and for
which the bounded component W,” of € — {«,(¢): 0 <t <t,} is contained



418 BELL

in W,, and [i?{logd, o ay(t)|dt =, where 8,(z) =inf{|z — w|: we W,}.
Clearly, [h(z)| < ¢58,%(2) for all z € C. To see that A(z) = 0 for z € W,, pick a
continuously differentiable homeomorphism 7 of closd, onto W," U {a,(1):
0<t<t)}, where dy={z: |z| < 1}, which is holomorphic on 4,. (This is
possible, by [6].) Then

© = f;lllog(sz o] Otz(t))i di = f:ﬁ llog(@z o T)(eiﬁ) d/d@T(eie)] do

< sup{|d/ddT(¢)]: 0 < 0 < 27} [ |log, o T(e)] 6,

implying [3"|h o T(e'®)|df = «, so h(z) = 0 for z € W, by [5], page 73. Using
this technique, we can prove inductively, that if X and Y are components of
C—closV, X< Y, and h(z) =0 for z € X, then h(z) =0 for z € Y. Then, by
hypothesis, A(z) =0 for z € clos(C —closV)=C - V.

By [1], page 7, and hypothesis ii, we see that 3 holds for r = 0, so the theorem
istrueforr=0andp=1.

We shall now show that 4 satisfies 3 for all r < 0. Choose an integer m > 0,
and a number a, 0 < a < 1, such that —2r = m + a. Let p € 3V, let f(z) be some
holomorphic branch of (z — p)® defined on ¥, and let w € C — V. Define

H(w,z) = (-1/m) fV MO K" (&, DI — 2)(E = w)" A D1d(D).

To see that H(w,z)=0 for ze C—~V, first pick m+ 1 distinct points
Z,Wy, <., W, in € — clos V, and let

g =Y -DE=w)—w) ... C—wu) S (D]

Then g € Ay (V), so using our theorem as proven above for r = 0, there exists a
sequence R;, Ry, Rs, ... of elements of M, such that lim {|[R, — gliy o1 =0.
Then ko

0=1lim [ MO KL O RDAWD = [, NO K/ (L D@ d(D).
Using hypothesis ii and [2], page 386, one sees that
[, MO K ONE =~ DE = w1) . (€= w S (D1

is a continuous function of any one of ze € and wy, wy, ..., w,e C—V,
with the remaining points fixed. So H(w,z) is continuous in z € C, and
H(w,z)=0 if zeC—V. Now define A(w,z): h(w,z)=0 if zeC—V,
hw,2)=(Z—-wmf(2)H(w,z) for zeV. Clearly h(w,z) is continuous
in z € €. Consider h(w,z) — h(z). It is continuous on C, zero on € — V, and
since 9/9z[h(w,z) — h(z)] = 0 almost everywhere on V, h(w,z) — h(z) is holo-
morphic on V. The maximum principle then implies A(w,z) = A(z) on C.
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Then [I], page 7, and hypothesis ii imply that & satisfies 3, completing the
proof of the theorem, for p = 1.

To prove the Theorem for 1 < p <2, we modify the above as follows: If

=-1and 1 <p <2, g will be of the form 1/[({ — 2)({ — w)({ — w;)}, so by
considering g as a linear combination of 1/({ — z), 1/({ —w,), 1/({ — w,) for
z, wy, and w, distinct, we see that H(w,z) = 0 for z € € — V. This implies that
the Theorem holds for 1 <p <2 and r =—1. The case r <—1 is handled as
above, by approximating g by elements of M.
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